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systems using thianthrene having ferrocene fragments
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Abstract—1-Ferrocenyl- and 1,9-diferrocenyl-thianthrenes have been synthesized by using palladium-catalyzed cross-coupling reac-
tions of 1-bromo- and 1,9-dibromo-thianthrenes with ferrocenylzinc chloride. The structure of 1-ferrocenylthianthrene was deter-
mined by X-ray crystallographic analysis. 1-Ferrocenyl- and 1,9-diferrocenyl-thianthrenes show well-defined separated two-steps
two-electrons and three-steps three-electrons reversible redox waves derived from the ferrocenium cation and the thianthrene radical
cation, respectively, by the cyclic voltammetry in dichloromethane containing the supporting electrolyte anion of [B(C6F5)4]�.
� 2006 Elsevier Ltd. All rights reserved.
Molecules comprising multiple reduction–oxidation
(redox) centers have received much attention in recent
years due to the preparation of new organic semicon-
ducting materials with application in material science.1

Moreover, this kind of molecule having two or more
redox-active metal centers is a fundamentally interesting
attractive target for the study of multi-electron transfer
processes via the mixed valence state derived from these
multi-metallic systems.2 Our interest in the design of
reversible multi-redox systems containing both organic
and organometallic fragments in one molecule
prompted us to synthesize functionalized thianthrenes
containing organometallic fragments. Thianthrene with
p-donor properties is an expected central organic unit
for the construction of a new type of donor system from
the following viewpoint of structural and redox proper-
ties:3 (1) oxidation of thianthrene to the 7p radical cat-
ion species occurs reversibly; (2) the thianthrene
radical cation is thermodynamically stable; (3) oxidation
of thianthrene converts a neutral bent structure to a pla-
nar radical cation structure and (4) thianthrene and oxi-
dized thianthrene units form highly ordered arrays with
intermolecular interactions involving both p–p stacking
and S–S contacts. However, there is no report concern-
ing a donor system based on functionalized thianthrene,
which is of structural and redox characteristic interest,
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in contrast to a donor system based on tetrathiafulval-
ene (TTF) with p-donor property as well as thianthrene.
Previously, it was reported that a donor system consist-
ing of TTF and ferrocene, which is known as a famous
metallocene with donor properties, showed a multi-steps
multi-electrons reversible redox wave corresponding to
oxidation of TTF and ferrocene in their cyclic voltam-
mograms.4 Therefore, we have designed 1-ferrocenyl-
and 1,9-diferrocenyl-thianthrenes as organic–organo-
metallic hybrid molecules. In this letter, we report the
synthesis, structural characterization, and electrochemi-
cal properties of 1-ferrocenyl- and 1,9-diferrocenyl-thian-
threnes (1 and 2).

The synthesis of two target molecules, 1 and 2, was
established by the use of typical transition-metal cata-
lyzed cross-coupling reactions as follows (Schemes 1
and 2). The reaction of ferrocene in tetrahydrofuran
(THF) with tert-butyllithium at 0 �C followed by treat-
ment with ZnCl2 at room temperature produced ferro-
cenylzinc chloride. The cross-coupling reactions of 1-
bromo- and 1,9-dibromo-thianthrenes (3 and 4), which
were prepared by the modified methods previously re-
ported,5 with ferrocenylzinc chloride in the presence of
catalytic amounts of PdCl2(PPh3)2 in THF under reflux
conditions gave 1 and 2 in 80% and 71% isolated yields,
respectively.6

The crystal structure of 1 was confirmed by X-ray crys-
tallographic analysis (Fig. 1).7 The butterfly angle be-
tween the two benzene rings (wings) of the thianthrene
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Scheme 1.

Scheme 2.
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is 129.4�, which is in good agreement with the typical
value of 128� for the previously reported parent thianth-
rene.3a,8 The substituted cyclopentadienyl ring is
rotated 139� from the benzene ring, and the C–C distance
between the ferrocenyl and benzene groups suggests a
double bond character because the length of
1.479(2) Å is slightly shorter than that of the sp2–sp2 sin-
gle bond (1.516 Å). The crystal packing reveals that two
molecules form p-stacked structure between substituted
benzene rings (Fig. 2). The p–p interaction distance
(3.651(10) Å) between the least-squares plane centers is
similar to that of standard thianthrene p–p stacking.

The redox properties of thianthrene–ferrocene systems
have been furnished by electrochemical measurements;
the data are collected in Table 1 and cyclic and differen-
tial pulse voltammograms of compounds 1 and 2 are
shown in Figure 3. The cyclic voltammograms of com-
pounds 1 and 2 measured in dichloromethane (CH2Cl2)
containing 0.1 mol dm�3 [Bu4N]+[PF6]� as a supporting
electrolyte showed two one-electron oxidation processes
and three one-electron oxidation processes correspond-
ing to ferrocene and thianthrene moieties as judged by
their respective differential pulse voltammograms. Oxi-
dation behavior of 1 is a well-defined reversible first
wave derived from the ferrocenium cation, but precipita-
tion of the dication radical generated by subsequent
one-electron oxidation of the thianthrene fragment and
cathodic stripping wave on the return sweep is observed.
On the other hand, oxidation behavior of 2 is both
reversible through the closely spaced first and second
waves which reflected the weak interaction of the intra-
molecular two ferrocenyl groups, and the stripping-type
third wave derived from the trication radical is observed
in a similar manner of compound 1. These results clearly
indicate that the produced multiply-charged cation radi-
cals are not sufficiently soluble in CH2Cl2 due to its low
polarity.

On the other hand, recently, it has been reported that
cyclic voltammetry in CH2Cl2 solution containing
[Bu4N]+[B(C6F5)4]� as a supporting electrolyte gives en-
hanced behavior for oxidation of complexes containing
two or more ferrocenyl groups, owing to good stability
and solubility of the multiply-charged oxidation prod-
ucts.9 We employed this electrochemical technique,
and the cyclic voltammograms obtained for compounds
1 and 2 are shown in Figure 4. By employing
0.05 mol dm�3 [Bu4N]+[B(C6F5)4]� as a supporting elec-
trolyte in CH2Cl2, all oxidation waves derived from the
ferrocenium cation and thianthrene radical cation
showed good separated and well-defined reversible re-
dox couples. These results clearly indicate that all oxida-
tion species are stable in fully soluble state. In addition,
the difference between the first and second half-poten-
tials (DE1=2 ¼ E1

1=2 � E2
1=2) for the Fe(II)–Fe(III) and



Figure 2. Top (a) and side (b) view of p-stacked structure of 1.

Table 1. Redox potentials [V vs Ag/Ag+]

1 2

First Second First Second Third

Epa +0.34 +1.25 +0.30b +0.37 +1.32
Epc +0.22 +1.10a +0.22 +0.31b +1.17a

E1/2 +0.28 — +0.26b +0.34b —

a Stripping-type waves.
b Calculated using peak potentials of DPV.

Figure 1. (a) ORTEP drawing of 1. Thermal ellipsoids are drawn at
50% probability. Selected bond lengths (Å) and bond angles (�): S1–C2
1.7762(16), C2–C3 1.398(2), C3–S4 1.7697(17), S4–C5 1.7653(18),
C5–C6 1.387(2), C7–C8 1.479(2), S1–C2–C3 119.71(12), C2–C3–S4
121.33(12), C3–S4–C5 101.53(7), S4–C5–C6 120.21(13), C5–C6–S1
121.52(13), C6–S1–C1 102.45(8). (b) Side view of 1.
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Fe(III)–Fe(III) couples of 2 when the counter-anion was
replaced from [PF6]� to [B(C6F5)4]� increases from 73 to
178 mV, which gave comproportionation constants
Kc = 18 and 1.2 · 103 for the Fe(II)–Fe(III) mixed-
valence state, respectively. These results suggest that the
thermodynamic stabilization of 2 arises from enhance-
ment of the electronic interaction between the metal cen-
ter of ferrocene and the ferrocenium cation in the mixed-
valence state owing to diminishing ion-pairing interac-
tion of the FeIII center with the borate anion with four
Figure 3. Cyclic (top) and differential pulse (bottom) voltammograms of 1 (left) and 2 (right) in 2 mmol dm�3 CH2Cl2 solution containing
0.1 mol dm�3 [Bu4N]+[PF6]� using a glassy-carbon working electrode and Ag/0.01 mol dm�3 AgNO3 in 0.1 mol dm�3 [Bu4N]+[PF6]�/CH3CN
solution as a reference electrode; scan rate was 100 mV s�1.



Figure 4. Cyclic (top) and differential pulse (bottom) voltammograms of 1 (left) and 2 (right) in 1 mmol dm�3 CH2Cl2 solution containing
0.05 mol dm�3 [Bu4N]+[B(C6F5)4]� using a glassy-carbon working electrode and Ag/0.01 mol dm�3 AgNO3 in 0.05 mol dm�3 [Bu4N]+[B(C6F5)4]�/
CH3CN solution as a reference electrode; scan rate was 100 mV s�1.

Table 2. Redox potentials [V vs Ag/Ag+]

1 2

First Second First Second Third

Epa +0.37 +1.37 +0.30 +0.48 +1.59
Epc +0.28 +1.27 +0.23 +0.40 +1.50
E1/2 +0.33 +1.32 +0.27 +0.44 +1.55
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bulky and electron-withdrawing pentafluorophenyl
moieties (compared with hexafluorophosphate), which
leads E2

1=2 to shift to more positive (anodic) potentials
(Table 2).

In conclusion, we have synthesized 1-ferrocenyl- and
1,9-diferrocenyl-thianthtrenes by palladium-catalyzed
cross-coupling reactions. The crystal structure of 1 was
confirmed by X-ray crystallographic analysis. The elec-
trochemical properties of 1 and 2 were furnished by cyc-
lic and differential pulse voltammetric studies. When a
weak ion-pairing anion [B(C6F5)4]� was employed as a
supporting electrolyte in CH2Cl2, the cyclic voltammo-
grams showed reversible multi-electron transfer phe-
nomena assigned to ferrocene (organometallic) and
thianthrene (organic) fragments owing to good stability
and solubility of the multiply-charged oxidation prod-
ucts. Therefore, we succeeded in establishing a new type
of multi-steps reversible redox systems using organic–
organometallic hybrid molecules.
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